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Turbulent boundary layers along a convex surface of varying curvature were 
investigated in a specially designed boundary-layer tunnel. A fairly complete 
set of turbulence measurements was obtained. 

The effect of curvature is striking. For example, along a convex wall the 
Reynolds stress is decreased near the wall and vanishes about midway between 
the wall and the edge of a boundary layer where there exists a velocity profile 
gradient created upstream of the curved wall. 

1. Introduction 
Reynolds (1884) listed “ curvature with the velocity greatest on the outside” 

as one of four “circumstances conducive to direct or steady motion” but 
“ curvature with the velocity greatest on the inside ” as one of four “ circumstances 
conducive to sinuous or unsteady motion”. From a description by Prandtl 
(1929) in an extension of his mixing-length argument one can see heuristically 
why turbulent flows are sensitive to curvature of the mean flow streamlines. 
For flows over convex surfaces, the centrifugal ‘force’ (density x centrifugal 
acceleration) is largely balanced by a normal pressure gradient. Particles moving 
outward across mean streamlines into regions of higher mean velocity should on 
average retain some memory of their previous (lower) mean velocity history; 
their individual centrifugal forces will be less than the new mean normal pressure 
gradient, resulting in a net restoring force. Therefore, convex boundary layers 
should exert a stabilizing influence on turbulent momentum exchange. On 
concave surfaces, the opposite destabilizing effect should occur. Prandtl also 
mentioned the apparent analogy between curvature effects and buoyancy 
effects in a density stratified flow; the latter idea has been developed further by 
Bradshaw (1969). 

Measurements in fully developed curved channels obtained by Wattendorf 
(1 935) and Eskinazi & Yeh (1 956) clearly indicated stabilization on the convex 
side of channels and destabilization on the concave side. Owing to cross-over 
effects near the channel centre-line, neither effect was clearly isolated, however. 

Mean velocity profiles of isolated boundary layers bounded by convex walls 

t Present address : Geophysical Fluid Dynamics Program, Rutgers University, New 
Brunswick, New Jersey 08903. 



44 R. M .  C. 80 and G. L. Mellor 

(10 h.p., two speed 

Transition section 

<Contraction section 
I 
~ R 

6 screens 

Honeycomb 

& 36 in.-&- Entrance 

FIGURE 1 .  A diagrammatic layout of the curved-wall tunnel. The span of the entrance and 
test section (normal to the page) was 4 ft. 

and outer potential flow fields were investigated by IVilcken (1930), Schmidbauer 
(1936), Schneider & Wade (1967) and Patel (1969a). The latter reference also 
contains an extensive bibliography including curved jet flows. 

Generally speaking, both channel flows and boundary-layer flows are obtained 
in an environment where large-scale secondary flows are present (Patel 1969b). 
The boundary-layer fluid on the end walls of the test channel sweeps from the 
concave to the convex side resulting in diverging flow on the convex-wall centre- 
line (see Mellor (1967) for an analytical treatment of this effect). Mainstream 
pressure gradients can also obscure direct interpretation of curvature effects. 

The present experiment ww designed to produce isolated boundary-layer flows 
in an environment where secondary flows have nearly been eliminated and where 
the mainstream pressure gradient is maintained a t  a near-zero value. A fairly 
complete set of turbulence measurements has been obtained so as to provide 
a relatively direct assessment of the effect of convex curvature on turbulent 
structure. 
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FIGURE 2.  Geometry of the curved test section. The convex test wall was made up of sectors 
of constant radius of curvature. The opposite wall was adjusted t o  give the nearly constant 
pressure in the region 50in. < x < 80in. shown in figure 4. All dimensions shown are in 
inches. 

Originally the intention was to obtain a so-called equilibrium boundary 
layer (Clauser 1954) differing from zero-pressure-gradient data only by virtue 
of the curvature effect. However, the stabilizing effect of convex curvature itself 
prevented the attainment of full equilibrium, but as we will see, the turbulence is 
in a kind of slowly varying equilibrium with the mean velocity profiles and the 
stabilizing effect of convex curvature on the Reynolds stresses is clearly visible. 

2. The experimental apparatus 
The curved-wall tunnel used in the present investigation is described in detail 

by So & Mellor (1972). Briefly, as shown in figures 1 and 2, the wind tunnel is of 
the open-return suction type and is powered by a two-speed 10 h.p. fan. The 
Reynolds number based on the reference entrance test velocity is 4.37 x 105ft-l. 
The inlet section of the tunnel consists of several layers of honeycomb flow- 
straighteners followed by a two-dimensional 6 to 1 contraction chamber. The 
straight section that follows is 4ft long and has a cross-section Bin. by 48in. 
The remainder of the tunnel consists of the curved test section, which has a fixed 
convex test wall of slightly varying curvature and an adjustable opposite wall, 
followed by the exit diffuser and the fan and motor housing. The adjustable wall 
permits some control of the pressure distribution on the curved test wall. 

In  designing the curved wall, an original object was to achieve an equilibrium 
constant-pressure profile characterized by a curvature parameter AIR, where A is 
the defect displacement thickness (defined below in equation (4b)) and R is the 
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FIGURE 3. Yaw distribution along the convex wall. Measurements were made with a Conrad 
probe with a diameter of 0.048 in. The solid and broken lines correspond to z = 54.5 in. 
and 7 1 in. respectively. 

radius of curvature. To maintain AIR constant, A(x) was estimated from flat- 
plate turbulent formulae and R(x)  varied accordingly as detailed in figure 2. 

Xecondary JEows in the curved end-wall regions 

In  the end-wall regions the centrifugal acceleration of the low velocity boundary- 
layer flows cannot balance the pressure gradient imposed by the mainstream. 
The resultant end-wall cross flows or secondary flows create a diverging flow near 
the tunnel centre-line; the severity of the effect will depend on the aspect ratio. 
The present tunnel has an aspect ratio of 8 in the straight section and a minimum 
aspect ratio of 6.2 in the curved test section. To determine the extent of the 
secondary flow, yaw measurements in the boundary layers were made using a 
Conrad probe a t  the tunnel centre-line and a t  planes 14in. above and below a t  
x = 54.5 in. and x = 71 in. (For the present study a Cartesian co-ordinate system 
with x measured along the wall in the flow direction and y normal to the wall was 
chosen. The origin of x was taken to be a t  the entrance to the straight section of 
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the tunnel. Therefore, at  the entrance to the curved test section, x = 48 in.) The 
probe, which was shaped like a goose-neck, was introduced into the flow through 
the adjustable wall and its axis was aligned with the radial line at the point of 
measurement. 

Initial measurements revealed that the yaw angles at  x = 54.5 in. were approxi- 
mately equal and opposite and reached a maximum of - 10' at 143.1. on either 
side of the centre-line while a t  x = 71 in. the maximum was N 20'. To reduce the 
secondary flows, eight small end-wall jets were installed on the top and bottom 
end walls at the entrance to the curved section (x = 48 in.). The jets were supplied 
at a pressure high enough to give critical flow at the jet exits. Thus, the amount 
of mass flow added to the end-wall boundary layers was quite small, while the 
amount of momentum added was adjusted to compensate the momentum defect 
of the end-wall boundary layers and was sufficient to reduce the secondary flow 
significantly even at x = 71 in. With this improvement it can be seen in figure 3 
that the flow along the tunnel centre-line was nearly free from the influence of 
secondary flows. 

Further reference to secondary-flow effects are to be found in appendix A. 

Pressure distributions on the convex test wall 
It was found that the pressure decreased slowly as the flow approached the 
entrance to the curved section, and then steeply a6 the flow entered the curved 
section. The pressure drop amounted to more than 60 yo of the reference dynamic 
head. An effort was made to reduce this pressure drop by increasing the cross- 
sectional area right at  the entrance, but to no avail. Later it was found that the 
flow was separated on the adjustable wall, right at the entrance to the curved 
test section. Therefore, increasing the cross-sectional area at this location merely 
increased the separated region, and the flow on the test wall was undisturbed. To 
correct this, a 4 ft side-wall jet was installed on the adjustable wall at  the entrance 
to the curved section. The opening of the jet was controlled by a flexible flap 
attached to the straight wall. The flap extended 8 in. into the straight section, 
thus providing a certain amount of control on the flow approaching the curved 
section. Sufficient momentum was supplied to the jet owing to the pressure 
difference between the outside and inside of the channel. With this arrangement, 
it was found possible to reduce the pressure drop to 23 %of the reference dynamic 
head preceded by a small overshoot. After x N 50 in. the wall was adjusted to 
give the nearly constant wall static pressure distribution measured at the tunnel 
centre-line shown in figure 4. The pressure was measured with reference to the 
total pressure in the potential core. Wall static pressure a t  planes l4in.  above 
and below the tunnel centre-line was also measured. The variations between 
these measurements and the centre-line measurements were less than 1 % of 
mainstream dynamic pressure. 

It should be noted that the reasonably moderate mainstream acceleration in 
the region 43 in. < x < 50 in. should not greatly affect the flow when x > 60 in. 
(60 in. - 50 in. N 808") and should affect it hardly at all when x > 70 in. 

(70in.-50h. N 1508"). 
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FIGURE 4. Wall static pressure distribution along convex wall. Pa, is the free-stream stagna- 
tion pressure, P(24,O) is the wall static pressure at  x = 24in. and P(z, 0) is the wall static 
pressure. 

X R UPlU s 6" e qb-4 
(in.) (in.) (ft/s) (in.) (in.) (in.) Cf (h2) AIR 

24.0 03 70.27 0.55 0.083 0,059 
52.5 10.59 78.74 0.95 0.112 0.085 
54.5 10.89 78.87 0.95 0.118 0.087 
56.5 11.20 78.79 0.95 0.125 0.091 
59.0 11.52 78.34 0.95 0.130 0.093 
63.0 11.84 78.66 0.95 0-133 0.094 
67.0 12.82 78.79 0.95 0-146 0.100 
71.0 12.82 78.98 0-95 0-155 0.105 

0.00352 
0.00336 
0.00310 
0.00290 
0.00275 
0 * 0 0 2 4 8 
0.00243 
0.00233 

0 0 
0.075 0.258 
0.072 0.275 
0.076 0.293 
0,079 0.304 
0.077 0.312 
0.089 0.327 
0.094 0.353 

TABLE 1. Boundary-layer parameters 

This assertion can be checked by direct appeal to similar data compiled for the 
Stanford Computation Conference (Coles & Hirst 1968). We have also checked 
this point using the computer program of Mellor & Herring (1968), which pre- 
dicted the Stanford data quite well. For the present initial conditions a t  x = 24 in. 
and the mainstream velocity distribution of figure 4, but for zero curvature, the 
computed profiles indica.ted the re-establishment of zero-pressure-gradient 
equilibrium at x = 60in. 

3. Measurement techniques 
A total head probe which was introduced into the flow through the adjustable 

wall with its axis aligned with the radial line at the point of measurement was 
used to measure the local stagnation pressure. The accuracy of the total head 
probe was checked against a standard Pitot-static probe in a fully developed 
turbulent pipe flow and no discrepancy was found between the two measured 
velocity profiles. Altogether twelve Stagnation pressure profiles were measured, 
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eight along the tunnel centre-line and four on planes 14 in. above and below. The 
velocity profiles were calculated from the measured stagnation pressure profiles 
according to the method described in appendix A. 

Mean velocity profiles were also obtained in the course of the turbulence 
measurements. These hot-wire profiles and the Pitot-tube profiles agreed to 

The principal parameters are presented in table 1. If U(x, y )  is the local mean 
within 1-2 yo, 

velocity, then from the condition of irrotationality 

Up = U,,(x) e-Mz)Y = Up,[( 1 - ky )  + 0 ( ~ k ) ~ ]  

is the potential-flow velocity field and Up, is its value a t  the wall. (We assume 
that the normal variation of curvature k is negligible.) The displacement and 
momentum thicknessea are 

and the skin-friction coefficient is 

q(x)  is an additional parameter involved in the integral balance as described in 
appendix A. AIR is also listed and is nearly constant in the test region. 

The skin friction at the wall was not measured, but was obtained from a 
Clauser (1956) plot whereby graph of U/Up, ws. log (yUpw/v) are determined from 
the law of the wall and are parametric in C,. The line that best fits the experimental 
points near the wall is taken to give the correct Cf for the meamred profile. These 
values are compatible with a momentum balance discussed in appendix A and 
with the turbulence measurements shown in figure 13 ( b ) .  

Turbulence measurements 

Generally, measurements of turbulent stresses are made with an x probe or 
a v probe. However, this method requires accurate alignment of the probe, and 
this posed serious problems in the present investigation. For this reason a 
rotating-wire technique proposed by Fujita & Kovasznay (1968) was developed. 
The method, used also by Bissonnette & Mellor (1971), involves the rotation of 
the probe stem about its own axis while the centre of the wire is held as a b e d  
point in the flow. The mean signal is then used to obtain calibrating constants 
for the turbulent fluctuating signal and in this sense is continuously aelf- 
calibrating. 

Again, the hot-wire probe was introduced into the flow through the adjustable 
wall such that the axis of the probe stem was aligned with the radial line at the 
point of memurement. In order to measure both the turbulence intensities (2, 
w2 and 2, where u, w and w are the fluctuating velocity components along the 
Ox, Oy and Ox axis) and the shear stress ( - ZLV), two different probe configurations, 
hereafter called probe A and probe B, were used. With probe A ,  the sensor 
rotated in a plane parallel to the tunnel wall (the x, x plane), while with probe B, 
the sensor rotated in a plane inclined at the complement of the angle the axis of 

- 

4 F L Y  60 
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FIGURE 5. Defect plot of flat-plate velocity profiles at x = 24in. Theory: -, /3 = 0, 
Mellor & Gibson (1966). Measurements: 0, zero-pressure-gradient flow along convex wall; 
a, adverse-pressure-gradient flow along convex wall; , zero-pressure-gradient flow along 
concave wall. 
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FIGURE 6. Shear stress and correlation distribution of flat-plate boundary layer a t  II: = 24 in. 
---, Klebanoff (1955); 0, zero-pressure-gradient flow along convex wall; a, adverse- 
pressure-gradient flow along convex wall; @, zero-pressure-gradient flow along concave wall. 
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FIGURE 7. Distribution of ( z ) $ / U z w ,  (w2)*/Upw and (u")*/Upw for flat-plate boundary layer 
a t  x = 24in. - , Klebanoff (1955); 0, zero-pressure-gradient flow dong convex wall; 
A, adverse-pressure-gradient flow along convex wdl; , zero-pressure-gradient flow along 
concave wall. 

the probe stem made with the tunnel wall (see figure 17). The hot-wire signals were 
plotted on X-Y  plotters and then digitized for analysis using the data reduction 
program of Bissonnette & Mellor (1971). Further details of the hot-wire technique 
are provided in appendix B. 

4. The experimental data 
Uniformity and steadiness of the flow in the upstream straight section of the 

tunnel were checked by observing tufts attached to the walls of the tunnel. To 
establish confidence in the measurement technique the upstream constant- 
pressure region at  x = 24in. was measured and compared with previous data. 
First, the velocity profile obtained with the flattened total head probe was plotted 
in figure 5 along with the zero-pressure-gradient profile of Mellor & Gibson (1966), 
which agreed with a great deal of previous data. This indicates that an equilibrium 
turbulent flow exists at x = 24in. In  figures 6 and 7 the measured -2tV/u:, 

4-2 
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FIGURE 8. Velocity profiles. 0, plane of symmetry; A,  14in. above plane of symmetry; 
v, 14in. belowplane of symmetry. Potential velocity: -,calculated from Uv/Uvw = 1 - Icy. 

-- 
- uV/(u2w2)3, (u~3 /Upw,  (G)*/Upw and (3)*/Upw were plotted against y/S and 
compared with the flat-plate data of Klebanoff (1955). 

Also shown are data obtained when the tunnel was set up for an adverse 
pressure gradient together with data obtained when the tunnel was rigged for 
experiments on the opposite concave wall.? 

The flow along a convex wall 

The mean profiles were first plotted in linear form in figure 8, which also shows 
their asymptotic behaviour as y -+ 00. In  figure 9 the measured velocity profiles 
were plotted to show the law of the wall region using the u, determined from 
Clauser plots. The profiles deviate from the logarithmic portion of the law of 
the wall given by 

(3) V/U, = 5.6 log ( ~ u , / v )  + 4.9 

at about the same point as for the flat-plate profile (x  = 24in.). 
Generalized for curved flow the defect law can be written as 

i The adverse pressure gradient data is available in the original report (So & Mellor 
1972) and will not be published elsewhere. The concave data, requiring a considerably 
different experimental approach, has been prepared for separate publication. 
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FIGURE 9. Semi-log plot of the velocity profiles to show the law of the wall region. 

0, z = 24in.; a, z = 54.5in.; 0, z = 59in.; A, x = 67in.; 0 ,  x = 71in. 

and P N -5*61og(y/A)+A as y+O. (4c) 

The velocity profiles are plotted in defect form in figure 10. With the assumption 
that U can be described equally by (3) or (4a, b, c ) ,  very near the wall (where 
V, g Up,), the combination of these two equations yields the skin-friction 
equation 

where Au, = Up,&" U pwJow (1-i)dY. 

Clauser (1956) pointed out that, for equilibrium flow where 

,8 = (6/rw) dp/dx = constant, 

F and A are independent of x but parametric in ,8; the function was later cal- 
culated by Melldr & Gibson (1966). For curved equilibrium flow one would 
presume that F and A would b9 parametric in p and AIR. 

The turbulence data are presented in figures 11-14. The normalized energy 
production -zcV/us (aU/ay-kU) is shown in figure 15. Advection of turbulent 
energy was not significant; diffusion and dissipation were not measured. 
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FIGURE 10. Semi-log plot of velocity defects to show dependence of A on curvature. 0, 
x = 24in., A = -0.59; a, z = 54.5in., A = -0.1; 0, z = 59in., A = 0.9; 0, 2 = 67in., 
A = 2.5; v, x = 71in., A = 2.7. 
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Y P  
FIGURE 11. Shear stress distribution across the boundary layer. - rv/Ui,: 0, x = 24 in.; 
A, 2 = 59in.; 0, I(: = 67in.; 0 ,  x = 71in. E / U : , :  0, x = 24in.; 0,  z = 71in. The data 
points at y/S = 0 are obtained from the Clauser plots. 
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FIGURE 12. Distribution of uT/U;,, v z / V ~ ,  and w"/Ui,  across the boundary layer. 
0, x = 24in.; A, x = 59in.; 0, x = 67in.; 0 ,  x = 71in. 

5. Discussion 
The wall friction data obtained by the Clauser plots are in agreement with 

a n  overall momentum balance described in appendix A, but appea.r a bit large 
relative to a wall extrapolation of the hot-wire data in figure 11. However, 
Bissonnette & Mellor (1971) had previously determined that -zcV (but not the 
energy component) data are measured low by the present system roughly when 
y / l s  2, where I is the wire length. This corresponds to y/S 5 0.13 in figure 11. 

Further evidence that curvature does not affect the flow near the wall is 
contained in figures 13(b) and 15, where the turbulent energy and production 
normalized by u, are similar to the flat-plate data in the wall region 

(y < 0.168 z 2 0 0 ~ / ~ , ) .  

The data at x: = 59in. (figure 13b) are influenced by the favourable pressure 
gradient at the entrance to the curved section; however, this influence disappears 
by the time the flow reaches x = 67 in. 

Equilibrium was not achieved. This is due primarily to the curvature itself, 
which has literally 'turned off' the shear stress at y z 0.48 2 0.4 in., where the 
velocity gradient is substa.ntia1. The ratio AIR increases a bit but this is probably 
a minor influence. (Note that in figure 12 the scattered deviation of ZLV about 
zero when y > 0.46 is about the same as the deviation of UW everywhere. This 
can be taken as the measurement error for the system although agreement of 
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FIGURE 14. Distribution of shear correlation coefficient across the boundary layer. 
0, x = 24in.; A, z = 59in.; 0, x = 67in.; 0,  x = 71in. 
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2 

FIGURE 15. Distribution of energy production across the boundary layer. ---, 2 = 24in.; 
a, x = 59in.; O,X = 67in.; 0 ,  x = 7 1 h .  

the flat-plate UV data with Klebanoff’s data was somewhat better.) Presumably, 
if the experiment could have been continued, the edge of the ‘Reynolds shear 
stress layer’ would have grown until it coincided with the edge of the ‘velocity 
layer’, at which point a true equilibrium boundary layer would have been 
established. 

If one exatmines the equations for the Reynolds stress tensor (single-point 
double-velocity correlation equations) one can readily see that the non- 
dimensional quantity 

should describe the relative importance of the curvature effect. Equation (6) 
was previously suggested by Bradshaw (1969), who heuristically pointed out an 
analogy between curvature stabilization and buoyancy stabilization in a density 
stratified boundary layer described by the Richardson number 

While we do not believe that the analogy is quite as close as might be construed 
from Bradshaw’s discussion, we nevertheless obtain a value of R; 0.30 a t  
y/6 = 0.4 and x = 7 1 h .  which can be compared to the value R, g 0.20 deter- 
mined by Businger et al. (1971) and others as the critical Richardson number 
beyond which turbulence cannot exist. One might go further and speculate that 
the low level 42 signal for y/S > 0.4 (see figures 12 and 13) represents linear ‘ internal 
waves’ with zero ZCV correlation (figure 14). 

In the law of the wall region, say yu,/v = 100, R; zz 0.035 and becomes smaller 
upon further approach to the wall. The data and correIations of Businger et al. 
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would indicate negligible stabilization at equivalent values of Ri in accordance 
with the present results. 

This work was supported by NASA Grant NGR 31-001-74 monitored by S. 
Lieblein. 

Appendix A. Pitot flow field measurements and the integral momentum 
balance 
To be consistent and at the same time simple in the interpretation and use of 

the data, we shall assume that the curvature k is constant throughout the layer 
which, in some sense, is connected with the asymptotic statement k8+ 0. In 
our case k8 = d/R M 0-1-not an impressively small number. Nevertheless, we 
shall assume that our flow field is described by 

(A 1) 

(A 2) 

au av -+-+kV = 0, 
ax ay 

au au 
U - + ' V - - t k k U V = - - - + -  - + 2 k - ,  

ax ay Pax aY P P 
7 

l a p  a (7 
where k = Ic(x), P is the mean static pressure and 7 is the combined Reynolds 
shear stress and molecular shear stress. For large y, where 7 - 0,  we have as 
a solution the irrotational flow field 

or Up,[( 1 - ky) + O(yk)2]. The full exponential function is, however, operationally 
convenient. 

It will be noted that we are estimating the normal pressure field using UP(x, y) 
rather than U(x,y) in (A 3). There are three reasons: &st, we believe that the 
use of (A 3) is a consistent approximation to the boundary-layer equations (where, 
of course, other terms have been neglected) based on analysis similar to that 
presented by Yajnik (1970) but more closely related to the analysis of Mellor 
(1972); second, (A 3) along with (A 1), (A 2) and (A 4) yields a relatively simple 
momentum integral balance; third, the difference in the calculated profiles is 
slight. Thus, the relationship between free-stream stagnation pressure and wa 11 
static pressure is 

Po, -P(x, 0) = +pu;w(z). (A 5)t 

t Whereas using aP/ay = kpUz we would have 

The quantity inside the square brackets is close to unity and varies from 1 to 0.97 for the 
present data. 
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FIGURE 16. Momentum balance. 0, PL, left-hand side of (A 7);  0, PR, right-hand side of 
(A 7); -- , rough estimate of secondary-flow contribution to PR. 

From the definition of local stagna.tion pressure P o ( ~ ,  y )  E P(x ,  y )  + ipU2(x, y), 
the following equation can be obtained using (A 3) and (A 5 ) :  

The first term on the right side of (A 6) is the potential profile and the second 
the boundary-layer Stagnation pressure deficit. 

A total head probe shaped like a goose-neck and flattened at the tip to a, 
thickness of 0-008 in. was used to  measure Porn - Po(x, y ) .  According to  Rogers & 
Berry (1950) the response of such a flat-nosed probe is quite independent of yaw 
angles of 15' or less. Therefore, the small yaw angle measured along the tunnel 
centre-line (figure 3) will not affect the stagnation pressure profile measurements. 
A pace Model CP 5ID pressure transducer together with a Disa 55 D 30 digital 
voltmeter was used to measure the pressure difference. The measured wall static 
pressure and Po, -Po(%, y )  were then substituted into (A 6) to calculate the 
velocity profiles in figure 8. 

Momentum integral balance 
The von K k m h  momentum integral balance for curved flows can be derived 
from (A 1)-(A 4) and is 
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where H = 6*/0 and 
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Following Coles & Hirst’s (1968) procedure, the equation can be written as 

From the measured values of 6*, 8 and C,, equation (A 7) is integrated numerically 
a.nd the result is shown in figure 16. It can be seen that all along the convex 
test wall PL, denoting the left-hand side of (A 7), is not too much different from 
PR, denoting the right-hand side of (A 7). Therefore, the two-dimensional 
momentum integral is satisfied and the flow can be said to be relatively two- 
dimensional. 

The effect of a diverging secondary flow can be included by inserting a W p z  
in (A I). This adds a term 

x s a w  (up,- u ) a y d x  
J z S 0  -z (u;w@)o 

to the right side of (A 7). A rough estimate obtained from the measurements in 
figure 3 is included in figure 16. 

Appendix B. Hot-wire technique 
The hot-wire equipment used was one TSI Model 1010 A constant-temperature 

anemometer; one Disa Model 55 D 10 linearizer; one Disa 55 D 35 true r.m.s. 
voltmeter; two Disa 55 D 30 digital voltmeters; one Texas Instrument X-Y 
plotter; one Pace Associates X-Y plotter; and one Techtronic twin-beam oscillo- 
scope. Two hot-wire probes were used: a straight probe, probe A ,  and a slanted 
probe, probe B, in which the axis of the stem makes an angle of 8 = 46” with the 
wall. The characteristic dimensions of the probes are length of stem, 1-5in.; 
diameter of stem, 0-059 in. ; length of prongs, 0.25 in.; and distance between tips 
of prongs, 0.06in. The sensors are tungsten wires mounted with their axes 
normal to the axis of the stem of the probe. Their characteristic dimensions are 
dia.meter 0.00015 in. and sensitive length 0.05 in. 

The hot wire was calibrated in a low turbulence calibration tunnel. The 
maximum turbulence level measured in the tunnel was 0-2 yo a t  a mean flow of 
100 ft/s. Calibration of the hot wire was usually made before and after each run, 
which lasted about 3 h. Practically no change was observed in the calibration 
curve. 

The probes were introduced into the flow through the adjustable wall. There- 
fore, the stern was positioned normal to the mean flow direction. The dis- 
turbances created by the stem and prongs of the probe could influence the 
measurements. However, Comte-Bellot, Strohl & Alcaraz (1971) found that the 
net effect caused by positioning the probe in the normal direction was approxi- 
mately the same as that caused by aligning the probe with the stream direction. 
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FIGURE 17. Co-ordinate system for probe A and probe B. 

In  the former case, the net effect was positive, while it was negative in the latter 
case. The rotation rate was chosen to be B N &r.p.m. and rotation was taken 
to span approximately -&T < q5 < &r. I n  order to account for the hysteresis 
due to the different time constants of the low-pass filter and the r.m.s. meter, 
the recordings were performed in both directions of rotation. The true signal was 
taken to be the average curve drawn between the two traces. 

With probe A ,  the sensor rotates in a plane that coincides with the x, z plane 
of a fiame of reference attached to the tunnel (figure 17). Therefore the signal 
gives 2, UW and 3. With probe B, the sensor rotates in a plane that makes an 
angle of ( in -0 )  with the x, z plane (figure 17), and the signal gives and z, whichresolveto~,u(vcosB+w&n @and ~ 2 c o s 2 0 + ~ s i n a 8 +  2 ~ s i n 0 c o s 0 ) .  
With?, UW and 3 known, UV and 3 can be calculated from the latter signal 
provided vW is also known. 

The general equations derived by Bissonnette & Mellor (1971) were used to 
analyse the hot-wire signals. Since all measurements were made a t  the tunnel 
centre-line, cross flows were very small (figure 3), and for all practical purposes 
were taken to be zero. Also, in reducing the data for zlv and 2, z)w was assumed 
zero. This assumption was justified because of the relative two-dimensionality 
of the flow. As an independent check, the measured 2Lw was found to be quite 
small (figure 1 I) .  
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